Achema middle east

Enesi Pharma partners with Adelaide University for Zika vaccine

Note* - All images used are for editorial and illustrative purposes only and may not originate from the original news provider or associated company.

Subscribe

- Never miss a story with notifications

- Gain full access to our premium content

- Browse free from any location or device.

Media Packs

Expand Your Reach With Our Customized Solutions Empowering Your Campaigns To Maximize Your Reach & Drive Real Results!

– Access the Media Pack Now

– Book a Conference Call

Leave Message for Us to Get Back

Related stories

Specialized Laboratory Equipment Requirements for Biologics and Biosimilar Development

The development of complex biological molecules requires a specialized toolkit distinct from traditional small-molecule chemistry. This article details the critical laboratory equipment—from advanced bioreactors to high-resolution characterization tools—that enables the precise engineering and rigorous analysis required for successful biologics and biosimilar innovation.

Next-Generation Laboratory Equipment Redefining Drug Discovery Workflows

Advanced technologies such as AI-integrated high-throughput screening platforms and automated assay systems are fundamentally transforming early-stage pharmaceutical research. These innovations address critical bottlenecks in productivity and data quality, enabling research teams to accelerate timeline-to-candidate selection while enhancing the predictive accuracy of drug discovery campaigns.

Redefining Success Metrics in Pharma Portfolio Management

Shift from traditional R&D metrics focused on milestone completion and budget adherence to outcome-based, value-focused metrics that measure strategic impact, learning velocity, and long-term portfolio health while aligning organizational behavior with strategic objectives.
- Advertisement -

Enesi Pharma, an innovative biotechnology company developing next-generation vaccination products targeting serious diseases, is delighted to announce its partnership with the University of Adelaide to develop a new thermostable, solid dose DNA vaccine for Zika virus to prevent infection of pregnant women and the resultant congenital effects in the unborn child.

This project aims to employ Enesi’s ImplaVax® formulation expertise and platform to create a protective Zika virus DNA vaccine in a solid dose implant format for transcutaneous delivery via a needle-free device. The innovative combination of this ImplaVax® formulation and delivery system with the novel DNA vaccine construct developed by researchers at the University of Adelaide is expected to enhance the vaccine’s efficacy, thermal stability and allow for safe and rapid vaccination of target populations that are otherwise geographically and economically disadvantaged.

DNA and RNA vaccines are becoming increasingly prominent and hold great potential against many diseases, as highlighted by the ongoing Covid-19 crisis. However, they also present important thermostability challenges and require an uninterrupted end-to-end cold chain throughout to maintain potency up to the point of administration. Enesi’s ImplaVax® technology aims to address these challenges by creating needle-free solid dose vaccines that are thermally stable at temperatures up to 40oC and eliminate the need for cold-chain storage and distribution.

The new AUD1.35 million collaboration with the University of Adelaide aims to advance the development of a novel thermostable, solid dose Zika virus DNA vaccine to Phase 1 clinical trials. The programme is being funded with AUD675,500 from the Australian Government’s Biomedical Translation Bridge (BTB) programme, and additional funding from Enesi Pharma, The Hospital Research Foundation, Adelaide Enterprise Commercial Accelerator Scheme and the University of Adelaide’s Faculty of Health and Medical Sciences.

David Hipkiss, Enesi Pharma CEO, commented:

“We are delighted to enter this new partnership with the University of Adelaide, and to leverage our ImplaVax® technologies to tackle the significant public health issue that Zika virus infection represents. We are particularly excited that this new collaboration is focused on advancing the development of a solid dose DNA vaccine through application of our ImplaVax® technology. While holding huge promise, it is recognised that DNA and RNA vaccines have significant cold chain requirements, which could impact the efficiency and reach of final products.

“We believe that our ImplaVax® technology could provide a solution to overcome these barriers. This belief is based upon our earlier work which has evidenced the ability for ImplaVax®-enabled DNA vaccine candidates to be thermally stable and retain their immunogenicity potential. A positive outcome from our new collaboration, alongside other projects evaluating ImplaVax®-enabled DNA and RNA vaccines, could help unlock the full potential of such approaches across a vast range of diseases, from Zika to Covid-19.”

Zika is a mosquito-transmitted ‘flavivirus’ currently circulating in the Americas and Asia, which causes microcephaly (a birth defect where a baby’s head is significantly smaller than expected) and other severe birth defects in infants born to infected mothers. These defects cannot be corrected, and the accompanying disabilities are lifelong and catastrophic. Zika can also cause Guillain-Barré syndrome in adults, and there is currently no therapy or approved vaccine available to prevent infection.

The Australian Government’s Biomedical Translation Bridge program, delivered by Australia’s Industry Growth Centre, MTPConnect, is an initiative of the Medical Research Future Fund, and aims to facilitate the translation of new therapies, technologies and medical devices through to the proof of concept stage.

Latest stories

Related stories

Specialized Laboratory Equipment Requirements for Biologics and Biosimilar Development

The development of complex biological molecules requires a specialized toolkit distinct from traditional small-molecule chemistry. This article details the critical laboratory equipment—from advanced bioreactors to high-resolution characterization tools—that enables the precise engineering and rigorous analysis required for successful biologics and biosimilar innovation.

Next-Generation Laboratory Equipment Redefining Drug Discovery Workflows

Advanced technologies such as AI-integrated high-throughput screening platforms and automated assay systems are fundamentally transforming early-stage pharmaceutical research. These innovations address critical bottlenecks in productivity and data quality, enabling research teams to accelerate timeline-to-candidate selection while enhancing the predictive accuracy of drug discovery campaigns.

Redefining Success Metrics in Pharma Portfolio Management

Shift from traditional R&D metrics focused on milestone completion and budget adherence to outcome-based, value-focused metrics that measure strategic impact, learning velocity, and long-term portfolio health while aligning organizational behavior with strategic objectives.

Smarter Resource Planning for Complex Pharma Development Portfolios

Align limited resources with complex pharmaceutical portfolios through capacity forecasting, skills-based planning, and dynamic resource reallocation, improving execution outcomes without increasing costs or overburdening teams.

Subscribe

- Never miss a story with notifications

- Gain full access to our premium content

- Browse free from any location or device.

Media Packs

Expand Your Reach With Our Customized Solutions Empowering Your Campaigns To Maximize Your Reach & Drive Real Results!

– Access theMedia Pack Now

– Book a Conference Call

Leave Message for Us to Get Back

Translate »